高粘度イオン液体中における原子分解能 AFM イメージング

Atomic-Resolution AFM Imaging in Viscous Ionic Liquid

一 井 崇 Takashi Ichii

京都大学大学院工学研究科材料工学専攻

要旨 液中環境下で用いられる原子間力顕微鏡では、そのフォースセンサとして Si 製カンチレバーが広く用いられている。一方、イオン液体はその多くが水や有機溶媒に比べて極めて粘度が高く(典型的に水の100倍程度)、Si 製カンチレバーを用いた場合、その振動のQ値が著しく抑制され、その結果、力検出感度が低下するという問題がある。この問題を解決する方法として、筆者らは先鋭化した探針を取り付けた音叉型水晶振動子センサ、いわゆる qPlus センサをフォースセンサとする方式を採用し、これにより高粘度イオン液体中でも比較的高いQ値を維持することが可能であること、ならびに原子・分子分解能観察が可能であることを示した、本稿では、これまでの装置開発の経緯とイオン液体中での高分解能イメージング結果とをあわせて紹介する。

キーワード:原子間力顕微鏡、イオン液体、音叉型水晶振動子、原子分解能

1. はじめに

イオン液体とはアニオンとカチオンのみからなる常温で液 体状態の塩である¹⁾. その代表的な構成イオンを図1に示す. NaCl などに代表される一般的な塩は、カチオン-アニオン 間のクーロン相互作用により、融点が高い. しかし、図に示 すような嵩高いイオンを用いることにより、このクーロン相 互作用を弱め、融点を低下させることができる。 単純なイオ ンの嵩高さだけでなく、イオンの側鎖の変更など、様々な方 向性より、多様なイオン液体の開発が進められている. イオ ン液体の定義は一義的ではなく、一般には融点が100℃以下 の塩を指すが、本稿では常温で液体のものを対象とする. そ の多くが有する特徴として、(1) 難揮発性・難燃性、(2) 高イオン伝導率,(3)高い電気化学安定性(広い電位窓)な どが挙げられる.これらの水や有機溶媒とは異なる特徴から, さまざまなアプリケーションへの応用を目指し、幅広い研究 が進められている. その中で, 電気化学や摩擦・潤滑 (lubrication) などは、イオン液体そのものの物性のみならず、 固体との界面での反応・現象に支配されることから、その分 析技術が求められている.

一般に、固-液界面では液体は非等方的な密度分布を有する(いわゆる溶媒和構造、図2). イオン液体はアニオンと カチオンの2成分のみからなり、水や有機溶媒などの分子性 液体とは固-液界面の構造も大きく様相が異なる. 近年、そ

〒 606-8501 京都市左京区吉田本町
TEL: 075-753-9130; FAX: 075-753-5484
E-mail: ichii.takashi.2m@kyoto-u.ac.jp
2016 年 5 月 6 日受付, 2016 年 6 月 30 日受理

の構造分析に原子間力顕微鏡(Atomic Force Microscopy; AFM)を用いた研究が多数報告されている^{2~5)}. contactmode AFM を用いたフォースカーブ測定をイオン液体 – 固体 界面で行った結果,イオンペアサイズとほぼ等しい周期によ りフォースカーブが変調され,これが界面での溶媒和構造の 存在を示唆するものと指摘されている.しかし,contactmode AFM は面内分解能に乏しく,そのため,イオン液体中

図2 水溶液とイオン液体での電極-電解液界面の違い.

図3 (a) Siカンチレバーを用いた液中 AFM, (b) 音叉型水 晶振動子センサを用いた液中 AFM, (c) 水溶液中での Si カン チレバーの振幅-周波数依存性の計算結果, (d) イオン液体中 での Si カンチレバーの振幅-周波数依存性の計算結果.

で原子分解能観察が可能な AFM の開発が求められていた.

一方, AFM の一方式である周波数変調 AFM (Frequency modulation AFM; FM-AFM) は近年著しい発展を遂げ, 従来超 高真空環境下のみで達成されてきた原子分解能観察が、大気 環境下あるいは液中環境下でも達成されるようになった6~9. そのほとんどで、Si 製のカンチレバーがフォースセンサと して用いられている. ここで, FM-AFM の最小検出力に深 く関わるパラメータの一つに、フォースセンサの振動のQ 値がある. 一般的なSiカンチレバーをフォースセンサとす る液中 FM-AFM (図3 (a)) では、カンチレバー全体を液 中に浸漬するため、Q値が著しく減衰する(真空中では 10000 以上であるのが、水中では10以下となる). これに対 し、Siカンチレバーの変位検出に用いられる光学系の改善 により、ノイズを低減し、力検出感度を高めることで、水や 有機溶媒中でも原子・分子分解能観察が達成された.しかし. Q値は粘性係数の逆数に比例するため、水の数十から数百倍 の粘度を有するイオン液体中では、Q値はさらに抑制される. Siカンチレバーの水中ならびにイオン液体中での共振スペ クトルをシミュレートしたものを図3(c), (d) に示すが, イオン液体中では共振ピークがほとんど確認できないほどま でQ値が低下していることがわかる.このような環境下では、 水溶液中よりもさらなる力検出感度の低下や励振の不安定化 が推測される.

そこでわれわれは、別のアプローチとして、イオン液体の ような高粘度液中でも比較的高いQ値を維持できるフォース センサを用いることで、この問題の解決に取り組んだ^{10~14)}. 具体的には、Siカンチレバーではなく、先鋭化した金属探 針を取り付けた音叉型水晶振動子センサをフォースセンサと し、その探針先端のみを液中に浸漬する(図3(b))ことで、 これを実現した.本稿では、われわれがこれまで開発に取り 組んできた液中FM-AFM およびそれによるイオン液体中で の分析結果について紹介する.

図4 (a) qPlus センサ (b), (c) 電解研磨タングステン探針の SEM 像, (d), (e) 二段階研磨シリコン探針の SEM 像.

2. 音叉型水晶振動子センサを用いた液中 AFM の開発

本研究では、フォースセンサとして aPlus センサを用いた. その写真を図4(a)に示す. qPlus センサは, 音叉型水晶振 動子(以下 QTF)を用いた AFM 用フォースセンサの一種で あり,ドイツの Giessibl によって開発された¹⁵⁾. カンチレバー とは異なり、光てこ法などの変位検出系を必要とせず、水晶 の圧電効果を利用し、変位を電気的に検出可能である. qPlus センサは QTF・探針・電極付き基板の3つのパーツか ら成り立つ.QTFの片腕を基板に接着剤で固定し、もう一 方の腕には探針を取り付ける. QTF は大きさ・バネ定数・ 共振周波数を選ぶことが可能であるが、共振周波数 32.768 kHz, バネ定数 1000-2000 N m⁻¹ 程度のものが用いら れることが多い. この高いバネ定数により、微小振幅(1nm 以下) での観察を可能にする. 液中 AFM では、液体の濡れ 上がりによるセンサのショートを防ぐため、大気・真空中に 比べて長い探針が必要となる.一方、探針が長すぎる、ある いは細すぎると探針そのもののバネ定数が低下し、走査時に 探針がたわむ問題が生じる.また,探針の質量が大きいとセ ンサの共振周波数が著しく低下する. これらの理由より, 筆 者は現在探針材料として以下の2種類を用いている.一つは タングステン探針であり、これは走査トンネル顕微鏡でもよ く用いられる. KOH や NaOH などのアルカリ水溶液中で直 流電圧(5~10V)を印加することで電解研磨により先端径 数十 nm に容易に先鋭化できる (図 4 (b) (c)). 直径 0.1 mm のタングステン線を電解研磨後、1~1.5mm ほどの長さに 切断し、接着剤で QTF 先端に取り付ける. タングステンは ヤング率が高く、硬い点で探針材料として適しているが、比 重が大きいため、センサの共振周波数は、探針取り付け前に

図5 qPlus センサを用いた液中 AFM のブロック図.

約 32 kHz であったものが、10 ~ 15 kHz まで低下する. こ れに対し、シリコンは多くの金属材料と比べてヤング率/密 度比が大きいため、軽くて硬い探針を作成できる. われわれ は、フッ酸水溶液中での直流電解研磨(150 V)と KOH 水 溶液中での異方性エッチングを組み合わせることで、先端径 120 nm 程度まで先鋭化可能であることを示した(図4(d) (e). これを用いることで、タングステン探針と同じ長さ でありながら、共振周波数を 20 kHz 以上に保つことが可能 となった¹⁴⁾. 共振周波数の向上は、力検出感度および応答速 度の点で有効である.

図5に qPlus センサを用いた FM-AFM の装置構成を示す. qPlus センサの振動は圧電電流として取り出し、これを電流-電圧変換アンプ(I-Vアンプ)により電圧信号に変換する. 圧電電流は速度に比例するため、qPlus センサは contactmode AFM には原理的に使用できない(DC での変位を検出 できない). また, 振幅変調 (Amplitude modulation; AM-) AFM (タッピングモード AFM とも呼ばれる) や位相変調 (Phase modulation; PM-) AFM は、カンチレバーに比べて qPlus センサのQ値が高く、かつ共振周波数がカンチレバー に比べて低いため適さない(ただし、粘度の高いイオン液体 中ではQ値が抑制されるため、応答速度は改善される¹²⁾). したがって, FM-AFM を用いるのが一般的である. 微小振 幅で用いられることが多いため,振幅検出回路(RMS-DC コンバータ)の前段にバンドパスフィルタを入れることで、 振幅制御を安定化させる.その他については、カンチレバー を用いる FM-AFM の構成とほぼ等しい.

I-V アンプの構成は力検出感度に最も大きく影響するので、 重要である. 市販のものも存在するが、筆者は高速・微小電 流オペアンプとチップ抵抗により自作している. チップ抵抗 の抵抗値は 100 MΩ である. 図6 (a) は大気中ならびに探 針先端をイオン液体に浸漬後の qPlus センサの熱振動スペク トルである¹⁰⁾. Q 値は大気中で 1460 であったのが、イオン 液体浸漬後は 150 まで低下したものの、Si カンチレバーに 比べて極めて高い値を示した. なお、変位換算ノイズ密度 $n_{\rm ds}$ は 125 fm Hz⁻¹² であり、これは近年の光てこ法の Si カン チレバーに比べると劣る. 一般に FM-AFM の周波数ノイズ

図6 (a) qPlus センサの大気中およびイオン液体中での熱振動 スペクトル, (b) qPlus センサの周波数ノイズ密度のQ値依存性.

密度 (N_{FM}) は以下の式で表される¹⁶⁾.

$$N_{FM} = \sqrt{\frac{f_0 k_B T}{\pi k Q A_0^2} + \frac{2n_{ds}^2}{A_0^2} f_m^2 + \frac{f_0^2}{2Q^2 A_0^2} n_{ds}^2}$$

ここで、 f_0 は共振周波数、 k_B はボルツマン定数、Tは温度、 k はバネ定数、 A_0 は振幅、 f_m は変調周波数である.ここで、 右辺平方根内第一項は熱雑音であり、第二、三項が検出系の 雑音である.この式から明らかなように、Q 値が大きいと第 三項は無視できるが、Q 値が低下するとこれが無視できなく なる.図6 (b) に qPlus センサの周波数ノイズ密度のQ 値 依存性を示す.これから明らかなように、Q > 100で、ほぼ この第三項を無視できる.すなわち、qPlus センサはイオン 液体に探針先端を浸漬後も、大気・真空中と比べて力検出感 度はほとんど低下しない、当然ながら、 n_{ds} を低減すること で第二、三項を低減し、結果として $N_{\rm FM}$ を低減できる.した がってQを高く保つだけではなく、 n_{ds} の低減に取り組むこ とも重要である.

qPlus センサを用いた液中 AFM によるイオン液体中 分析

図7(a)はKCl水溶液(濃度1molL⁻¹)中にて、マイカ 劈開面を観察した結果である¹⁰⁾.マイカ劈開面の結晶構造に よく対応した、いわゆるハニカム構造が可視化されており、 このFM-AFMが水溶液中で原子分解能を有していることが わかる.一方、図7(b)は同じくマイカ劈開面をイオン液 体1-ethyl-3-methylimidazolium acetate(EMI-AcO)中で観察 した結果である.EMI-AcOの粘度は93 cPであり、水(0.89 cP) より約100倍高い.しかし、このように粘度の高い液中環境 下でも、水溶液中と同様に原子スケールコントラストが可視 化され、本手法の有用性が示された.

図7(c)はイオン液体 EMI-AcO/マイカ壁界面で取得した, 周波数シフト(Δf)の探針-試料間距離依存性(フォースカー ブ)である. 探針が試料表面に近づくにつれ, Δf が単調に 増加もしくは減少するのではなく, 周期的に増減しているこ とがわかる. この周期は約0.65 nm であり, これは密度から 計算される理論的なイオンペアサイズ(ただし,結晶構造は 単純立方格子と仮定¹⁷⁾)とよく一致している. この結果は, イオン液体 EMI-AcO がマイカとの界面で, 図7(d) に示す

図7 (a) 水溶液中で撮像したマイカ劈開面の表面形状像, $\Delta f = +40$ Hz, A = 150 pm, (b) イオン液体 EMI-AcO 中で撮像したマイカ劈開面の表面形状像, $\Delta f = +40$ Hz, A = 100 pm, (c) EMI-AcO/マイカ界面で取得した Δf の探針ー試料間距離 依存性, (d) EMI-AcO/マイカ界面の模式図.

ように、イオンペアサイズの厚さを周期とする層状の密度分 布を形成していることを意味する(マイカ劈開面は一般に負 に帯電しているので、ここではカチオンが最表面に存在する モデルで表記). 一般に、水などの分子性液体の場合、フォー スカーブは探針-試料間距離に対し同様に周期的な増減を示 すが、その周期はほぼ分子サイズに等しいことが報告されて いる. 一方、イオン液体中では、各構成イオンではなく、イ オンペアサイズの周期で相互作用力が変調されることが確認 された. これについて、最近天野らにより2成分系の液体の 溶媒和構造に関する理論研究が報告されており、界面でアニ オン・カチオンの層状構造を形成するのであれば、フォース カーブの振動周期がイオンペアサイズと同等になるのは妥当 である¹⁸⁾.

図7(d) に示すような溶媒和構造のモデルが成り立つので あれば、その構造は固体基板表面の電荷分布・密度に大きく 影響されると予想される。そこで、電気的に中性なアルカリ ハライド(100) 劈開面について、イオン液体中で FM-AFM 分 析を行った¹¹⁾. 具体的には、KCl単結晶(100)面に疎水性イオ ン液体 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (Py_{1,4}-FAP)を滴下し、その界面をFM-AFM 分 析した. Py_{1,4}-FAPを用いた理由は、EMI-AcOは親水性であり、 水への溶解度の高い KCl の(水含有)イオン液体中への溶解 を防ぐためである. なお、KCl はイオン液体 Py_{1,4}-FAP へもわ ずかながら溶解する(0.1%未満)ため、KCl 飽和 Py_{1,4}-FAP を調整し、これを用いた.

図8(a)はKCl 飽和 Py_{1,4}-FAP 中で撮像した KCl(100)面の 表面形状像である.熱ドリフトにより少し歪みはあるが,約 0.4 nm 周期の正方格子が確認された.この結果は,K⁺もし

図8 (a) KCl 飽和Py_{1,4}-FAP中で撮像した KCl(100) 面の表面形状 像、 $\Delta f = +60$ Hz, A = 150 pm, (b) KCl 飽和 Py_{1,4}-FAP/KCl(100) 界面で取得した二次元 $\Delta f \sim \neg \neg$, A = 150 pm, (c) ~ (f) (b) よ り抽出した Δf の探針-試料間距離依存性.

くは CF いずれかのイオンのみが可視化されていることを示 している. これまでの超高真空中での FM-AFM によるイオ ン結晶表面構造分析でも、アニオンもしくはカチオンのみし か可視化されないことが報告されており、イオン液体中でも 同様の結果が得られた. 次に、KCI 飽和 Py₁₄-FAP/KCI(100) 界面で Δf の探針-試料間距離依存性(フォースカーブ)を 測定した. ここでは、試料表面一点のみで測定するのではな く、面内方向に 10 nm にわたり、連続して 128 回測定を行い、 二次元 Δf マップを取得した. その結果を図 8 (b) に示す. 約 0.3 nm 周期の層状構造が見え、一見すると溶媒和構造が 可視化されているようにも見える. しかし、0.3 nm という 周期は Py₁₄-FAP のイオンペアサイズ(~ 0.9 nm)よりも明 らかに小さい. 一方で、これは KCI(100) の原子層 1 層分の 厚さとほぼ等しい. したがって、KCI(100) 面上ではイオン ペアを周期とする溶媒和層は形成されないことがわかる.こ の結果は、イオン液体溶媒和層が固体基板表面の電荷分布・ 密度に依存するという推測とよく一致する.

より詳細に解析するため、図8(b)より4本のフォース カーブを抽出した. その結果を図8(c)~(f) に示す. マ イカ劈開面上でのフォースカーブでは sinusoidal な Δf の増減 が見られたが、KCI(100)上ではノコギリ波状であった.また、 ∆fの増減がほとんど見られないもの(図8(f))から,複数 の増減が見られるものまで(図8(c)(d)(e))存在して おり, Δfの増減の回数に周期性や位置依存性はない. これ らの結果は、以下のように考察できる. Pv14-FAP/KCI(100) 界面は溶解平衡の状態にあり, KCl(100) 表面層は安定では ない.約0.3 nm 周期の層状構造はイオン液体由来ではなく、 Py1a-FAP/KCI(100) 界面に形成された不安定な KCI(100) 表面 層に由来する. 探針を KCl(100) 表面に近づけていくと, 接 近に伴い、斥力が増加し、∆fが正にシフトするが、探針に より印加された力誘起もしくは自発的な溶解により、探針-試料間距離が再び広がり、Δfも急峻に減衰する. これを繰 り返すことで、ノコギリ波上のフォースカーブが得られたと 考えられる.

4. まとめ

イオン液体のような粘度の高い液中では従来のカンチレ バーを用いた FM-AFM では Q 値が著しく低下するが、本研 究のように qPlus センサを用いることで比較的高い Q 値を 保ちながら FM-AFM 動作を実現できる. 力検出感度の点で はまだまだ改善の余地があるが、原子分解能も得られており、 本手法の有用性が示された. 今後、さらなる力検出感度の向 上を図ることで、より高分解能化や高速化、三次元フォース マッピングへの展開などが期待できる.

謝 辞

本研究は京都大学大学院工学研究科材料工学専攻で行われ たものであり,共同研究者である杉村博之教授,邑瀬邦明教 授,宇都宮徹助教,ならびに藤村元彦氏,根上将大氏,古谷 喜久氏,大森康平氏,田飼伸匡氏ら研究室学生の協力によっ て行われました.また,本研究は科学研究費補助金(No. 21760554, No. 24760027, No. 26286050), 科学技術振興機構 研究成果最適展開支援プログラム (A-STEP), ならびに公益 財団法人みずほ学術振興財団工学研究助成の助成を受けて遂 行されました. ここに厚く御礼申し上げます.

献

- Ohno, H. (Eds.): Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, New York, USA (2005)
- 2) Atkin, R. and Warr, G.G.: J. Phys. Chem. C, 111, 5162 (2007)

文

- Hayes, R., Abedin, S.Z.E. and Atkin, R.: J. Phys. Chem. B, 113, 7049 (2009)
- Atkin, R., Abedin, S.Z.E., Hayes, R., Gasparotto, L.H.S., Borisenko, N. and Endres, F.: *J. Phys. Chem. C*, 113, 13266 (2009)
- Endres, F., Höfft, O., Borisenko, N., Gasparotto, L.H., Prowald, A., Al-Salman, R., Carstens, T., Atkin, R., Bund, A. and Abedin, S.Z.E.: *Phys. Chem. Chem. Phys.*, 12, 1724 (2010)
- Fukuma, T., Kobayashi, K., Matsushige, K. and Yamada, H.: *Appl. Phys. Lett.*, 87, 034101 (2005)
- 7) Kimura, K., Ido, S., Oyabu, N., Kobayashi, K., Hirata, Y., Imai, T. and Yamada, H.: J. Chem. Phys., 139(19), 194705 (2010)
- Fukuma, T., Ueda, Y., Yoshioka, S. and Asakawa, H.: *Phys. Rev. Lett.*, 104, 016101 (2010)
- Yokota, Y., Hara, H., Harada, T., Imanishi, A., Uemura, T., Takeya, J. and Fukui, K.: *Chem. Commun.*, 49, 10596 (2013)
- Ichii, T., Fujimura, M., Negami, M., Murase, K. and Sugimura, H.: Jpn. J. Appl. Phys., 51, 08KB08 (2012)
- Ichii, T., Negami, M. and Sugimura, H.: J. Phys. Chem. C, 118(46), 26803 (2014)
- 12) Ichii, T., Negami, M., Fujimura, M., Murase, K. and Sugimura, H.: *Electrochemistry*, 82(5), 380 (2014)
- 13) Ichii, T., Furutani, Y., Negami, M., Utsunomiya, T., Murase, K. and Sugimura, H.: *Chem. Lett.*, 44(4), 459 (2015)
- 14) Ichii, T., Tagai, N., Omori, K., Uchida, T., Utsunomiya, T. and Sugimura, H.: Jpn. J. Appl. Phys., 54, 098005 (2015)
- 15) Giessibl, F.J.: Appl. Phys. Lett., 73, 3956 (1998)
- Kobayashi, K., Yamada, H. and Matsushige, K.: *Rev. Sci. Instrum.*, 80, 043708 (2009)
- Horn, R.G., Evans, D.F. and Ninham, B.W.: J. Phys. Chem., 92, 3531 (1988)
- 18) Amano, K., Suzuki, K., Fukuma, T. and Onishi, H.: arXiv: 1212.6138 (2012)