1 nm 高分解能走査型広がり抵抗顕微鏡(SSRM)と LSI デバイス解析への応用

1-nm High Resolution Scanning Spreading Resistance Microscope and Its Application to LSI Devices

張 利

Li Zhang

^a(株)東芝研究開発センター

要 旨 近年,微細化により LSI デバイスのサイズがナノスケールに突入し、プロセス制御の困難さが増し、高精度、高分解能、高次元分 析技術への要求が高まっている。その中でも最も重要なテーマの一つは電荷キャリア濃度分布の2次元計測技術である。その代表 的な計測技術として走査型広がり抵抗顕微鏡(SSRM)が注目されている。SSRM は、導電性原子間力顕微鏡(C-AFM)アプリケー ションの一つであり、デバイス断面に導電性プローブを当てて内部抵抗を精査する手法で、短時間で電荷キャリアの分布を2次元 的に解析できる。本稿では、SSRM 技術を用いたキャリア分布評価において、導電性プローブと試料間の接触抵抗低減による分解 能向上や、断面試料作製プロセス、3次元デバイスシミュレーションにより1nm 高分解能検証及び、45nm 以降世代の実デバイス 解析への応用例を紹介する。

キーワード:走査型広がり抵抗顕微鏡, SSRM, 2D キャリアプロファイリング, 真空, 高分解能

1. LSI の微細化が計測技術への要求

近年, CMOS トランジス (CMOSFET) などの LSI デバイ スの微細化が急速に進むにつれ, LSI プロセスはナノテクノ ロジーの領域に突入し, プロセス制御の難しさから, 高精度, 高分解能, 高次元の分析技術への要求が高まりつつある. 国 際半導体技術ロードマップ (ITRS) で要求されている不純 物濃度分布計測(2D/3D)の空間分解能は2008年で既に2.5 nm であり, 今後はさらに厳しくなる見通しである¹⁾. しかし, このようなナノデバイス開発現場からのニーズに, 計測技術 の開発は遅れていた. とりわけ, デバイス性能を左右する電 荷キャリアのナノスケール 2 次元濃度分布を解析できる計測 技術の開発が急務となっている.

ナノサイズ微細トランジスタの断面構造の例を図1に示 す. pn 接合位置や不純物濃度分布の僅かなずれが, デバイ スの特性ばらつきをもたらすことから, 接合や不純物分布を 高精度で計測することが高性能デバイスを開発する上で大変 重要となる²⁾.

SIMS による一次元深さ方向キャリア濃度分布分析は接合 及び不純物濃度解析に有効な手段であるが、デバイス断面に おける接合位置など2次元的な情報を得るためには走査型プ ローブ顕微鏡(SPM: Scanning Probe Microscope)ファミリー 及び電子線ホログラフィー(Electron Holography)が用いら れている. SPM ファミリーでは,走査型トンネル顕微鏡 (STM: Scanning Tunneling Microscope),走査型広がり抵抗顕 微鏡 (SSRM),走査型容量顕微鏡 (SCM: Scanning Capacitance Microscope),走査型ケルビンフォース顕微鏡 (KFM: Kelvin Force Microscope) などが挙げられる.

2次元キャリア解析技術の要求されるスペックとして,主 に以下の3点が挙げられる:高い空間分解能,広い不純物濃 度測定レンジ(10¹⁵–10²⁰ cm⁻³),及び評価に要する時間の短さ と手軽さである.STM や Electron Holography は高い空間分 解能を示しているが,10¹⁸ 乗以下の低い不純物濃度の検出は 難しいとされている.評価可能なダイナミックレンジの広さ と分析にあたって試料準備の簡便さが要求されることから,

図1 微細 CMOS 構造. ソース・ドレイン・エクステンション (SDE) 接合位置や,短チャンネル効果を抑えるための Halo 不純物分布の制御が重要性を増している.

^a〒212-8582 川崎市幸区小向東芝町1 TEL: 044-549-2316; FAX: 044-520-1257 E-mail: li.zhang@toshiba.co.jp 2009年7月8日受付

これらの目的にフィットできるのは SSRM³⁴ と SCM に絞ら れる. このうち, 微細デバイスを評価するのに数ナノメート ルの高空間分解能が要求される場合, SCM ではこのスペッ クを満たすことができない.一方, SSRM の場合, SSRM 信 号がキャリア濃度にほぼ比例しているため, プローブと試料 間にバイアス(電圧)を印加することにより得られる 2 次元 電流分布像から, キャリア濃度の 2 次元分布が得られる. 直 接的にキャリア濃度の 2 次元分布を測定することができ, 1 nm の空間分解能が報告されていることなどから⁴⁵, 極浅 接合デバイスの 2 次元キャリア濃度評価に最有力な測定法と されている.

2. 真空排気による分解能向上

SSRM は 導 電 性 原 子 間 力 顕 微 鏡 (C-AFM: Conductive Atomic Force Microscope)の応用の一つであり, 導電性プロー ブと試料間にバイアス電圧を印加し, 接触モードにおいてプ ローブを試料表面に走査することによってトポグラフィー像 と同時に試料の局所的抵抗分布が得られる. SSRM の最も重 要な応用は, シリコンデバイスの断面 2 次元電荷キャリア分 布評価である. 高空間分解能でのキャリア濃度評価に最も有 力な手法と言われてきたが, 2005 年までの約 10 年間, 特製 のプローブを用いなければ, 分解能の高い鮮明な像は得られ なかった⁶⁾. しかし, 特製のプローブを用いた場合であって も, 空間分解能は約 5 nm にとどまり, 45 nm 世代以降の LSI デバイス解析には十分とは言えなかった.

そこで我々は導電性プローブと被測定試料間の電気的コン タクトに注目し、プローブと試料間の良好なコンタクトが高 分解能像を得るための必須条件であることを突き止めた.そ して、それまでの大気中での測定を改め、真空中において SSRM 測定を行うことによりプローブと試料間に介在する水 蒸気やコンタミネーションなどの影響が抑え、ノイズや接触 抵抗の低減に効果が大きいことを確認した.真空中測定概念 図を図2に示す.図3には真空排気効果を示す⁴⁾.大気中で はノイズだらけで良好な測定ができないが、真空中では高分 解能な像が高再現性に得られ、真空排気はSSRM 測定には 極めて重要であることがわかった.さらにはプローブと試料 間の接触圧力の最適化、測定回路全体の寄生抵抗低減など、 計測に関わるプロセス全般を見直し、市販のプローブを用い て世界トップレベルの分解能のSSRM 像の取得に成功した (図4).図4に、極浅 pn 接合を持つトランジスタのSSRM ダイヤモンド・コーティング・プローブ

図 2 高真空中 SSRM 測定回路模式図. 真空度:<1×10⁻⁵ Torr.

像を示す. 図4 では導電性の高いニッケルシリサイド (NiSi) 金属相ゲート領域, ポリシリコンゲート領域, ソース・ドレ イン・エクステンション領域 (SDE) 及び短チャンネル効果 を抑えるための Halo 不純物領域などすべての領域を高感度 で識別できた. 従来はほとんど検出できなかった Halo 不純 物電荷キャリア分布を細やかな濃淡で観察できることや, 異 なるゲート長で接合深さの再現性が得られることなどから, 高精度が確認された⁴.

3. 断面試料作製及び測定条件

断面2次元SSRM 測定には断面試料作製が必要である. 基本的にはSCM 同様,平坦な最終仕上げは必要であるが, 測定面の酸化処理は必要としない.図5に,試料作製から 測定,データ解析までの流れをフローチャートに示す⁷.

測定にはプローブと試料間の良好なコンタクトや高空間分 解能及び高再現性が要求されるため、硬く、鋭く、磨耗に強 い導電性プローブが必要とされ、通常はこれらの条件をすべ て満たすことができるダイヤモンドプローブが用いられる. カンチレバーのばね常数は20-100 N/m で、プローブ・試料 間の触圧はμN以上が必要とされている. ダイヤモンドプ ローブはダイヤモンドコーティングシリコンプローブと、 モールド法によるフルダイヤモンドプローブの使用が報告さ れている⁶ が、現在市販されているのはダイヤモンドコー ティングプローブのみである. プローブの導電性を確認する

図3 真空(a)→大気中(b)→再び真空中(c)SSRM像.明るい領域が高い導電性を示す.

図4 極浅接合 pMOS トランジスタにおける SSRM 像.

図5 SSRM 測定フローチャート

ためには、Pt または Au 薄膜試料を用いた抵抗測定が有効で ある. 市販のダイヤモンドプローブの抵抗値は数 kΩ である. また,広い不純物濃度レンジを測定するため,対数出力電流 アンプが用いられる.

3次元デバイスシミュレーションによる1nm高分解能 検証

SSRM 計測技術の空間分解能評価について、シリコン材料 の内部において、pn 接合の深さをどこまでの精度で評価で きるかは極めて重要な指標となる.そこで、3次元デバイス シミュレーションを用いて、プローブ有効半径を変化させた ときの SSRM による pn 接合深さを調べ、実測 pn 接合深さ との比較を行ない、実測プローブ有効半径を見積もった. 図6(a)に、SDE 接合における実測 SSRM 抵抗プロファイ ルを示し、SSRM 像を挿入図に示す.図7に 3D シミュレー

図6 SDE-Halo 接合における SSRM プロファイル. 接合深さ Xj = 11 nm. SSRM 像は挿入図に示す.

図7 3次元デバイスシミュレーションセットアップ. キャリ アプロファイル計算には活性化したボロンと砒素の SIMS デー タを用いた.

ションセットアップを示し、半径 a であるプローブを用いて SDE-halo 接合をスキャンし、プローブと試料間はオーミッ クコンタクトを想定する. シミュレーションパラメータは実 測値と同様に設定し、プローブ―試料間に 50 mV を印加し、 断面から裏面電極の距離は5µmとする. キャリアプロファ イル計算には活性化したボロンと砒素の SIMS データを用い た. シミュレーションには two-carrier drift-diffusion モデル を用いた⁸⁾. a = 0.5 nm のシミュレーション結果を図8(a) に示す. ネット不純物分布, キャリア濃度分布及び SSRM によるキャリアプロファイルの結果がそれぞれ得られてい る. 図8(a)から、キャリアプロファイルはネット不純物 のシャープなプロファイルから乖離し、より幅広く分布して いることがわかる. これは急峻な接合を取り扱う際, Debve 長が無視できないことを示唆し、キャリア濃度分布が不純物 分布に追随できないことを意味する.従って、キャリア濃度 を直接計測する必要がある.一方,図8(a)ではSSRMに よるキャリアプロファイルはキャリア分布とよく一致してい ることから, SSRM 測定はキャリア分布計測に適しているこ

図8 3次元デバイスシミュレーション結果. (a) ネット不純物分布, キャリア濃度分布, SSRM によるキャリア分布を示す; (b) SSRM 導電率プロファイル, Xj のプローブ半径依存性を 挿入図に示す.

とがわかる. SDE 接合の深さ Xj は図 8 (b) に示す導電率プロファイルの最小点から抽出され, a=0.5 nm の場合は Xj = 11 nm となる. また, Xj のプローブ有効半径依存性を図 8(b)の挿入図に示し, SSRM 測定で得られている Xj はプローブの有効半径 a とほぼ比例することがわかり, a の増加に伴って Xj が深くなることがわかる. 実測 Xj = 11 nm であることから, 実測 SSRM の有効半径は約 0.5 nm であることが確認 され,約1 nm の高い空間分解能が示された.

5. 先端 LSI プロセス開発への適用

45 nm 世代以降の LSI では、デバイスの漏れ電流増加がデ バイス特性劣化の要因となり、その漏れ電流を抑制できるの は Halo 不純物キャリア濃度分布の高精度な制御によってで ある. 図9(a) に正常動作デバイスと漏れ電流の増加によ る劣化したデバイス特性を示す. その正常特性と不良特性に 対応するプロセスにより製作されたデバイスの SSRM 像を 図9(b),(c) に示し、プロファイル比較を図9(d) に示す. 正常プロセスに対して不良プロセスの Halo 不純物抵抗値は 1桁高くなっており、キャリア濃度は1桁以上低くなってい ることがわかる. このキャリア濃度の差異がデバイス特性劣 化へ影響していることを初めて実証した.

図9 プロセス条件出しへの応用例. (a) デバイス Vth-roll-off 特性; (b) 良品 SSRM 像 (プロセス A); (c) 不良品 SSRM 像 (プ ロセス B); (d) プロファイル比較, Halo 領域濃度の差異がデ バイス特性の違いと一致.

6. おわりに

LSI 技術の微細化と共に,新しい構造,シリコン以外の新 材料の探索も要求されはじめている. 微細な領域で何が起き て,どのようなメカニズムで働いているのかなど,現象を目 の当たりに観察できれば,プロセスや材料の本質への理解が 進み,ブレークスルーに繋げることができる.また,SSRM 計測技術は高感度2次元イメージング技術であると同時に, 抵抗における高精度ナノプロービング技術であり,様々なナ ノデバイス計測に活用されると期待されている.

謝 辞

試料提供及び計算頂いた(株)東芝の安達甘奈氏,谷本弘 吉氏に,また有意義な議論を頂いた(株)東芝の竹野史郎氏, 古賀淳二氏,西山彰氏に深謝致します.

献

- The International Technology Roadmap for Semiconductors (ITRS), 2008 ed. [Online]. Available: http://www.itrs.net
- 2) Taur, Y.: IBM J. RES. & DEV., 46, No. 2/3, 213-222 (2002)

文

- De Wolf, P., Clarysse, T., Vandervorst, W., Hellemans, L., Niedemann, P. and Hanni, W.: J. Vac. Sci. Technol. B, 16, 355–361 (1998)
- Zhang, L., Ohuchi, K., Adachi, K., Ishimaru, K., Takayanagi, M. and Nishiyama, A.: *Appl. Phys. Lett.*, 90, 192103 (2007)
- Zhang, L., Tanimoto, H., Kanna, K. and Nishiyama, A.: *IEEE Electron Device Lett.*, 29, no. 7, 799–801 (2008)
- Alvarez, D., Hartwich, J., Fouchier, M., Eyben, P. and Vandervorst, W: Appl. Phys. Lett., 82, 1724–1726 (2003)
- TSI テスティング学会(編), LSI テスティングハンドブック, オーム社,東京,422 (2008)
- Masetti, G., Severi, M. and Solmi, S.: *IEEE Trans. Electron Devices*, ED-30, no. 7, 764–769 (1983)